Причины аддитивных погрешностей си. Систематические погрешности Мультипликативная величина

Дополнительная погрешность – возникает при отклонениях влияющих факторов от нормальных.

Три формы погрешности.

1. Абсолютная погрешность

2.Относительная погрешность

3. Приведенная погрешность

где Х n – диапазон измерений.

Метрологические характеристики средств измерения

1. Функция преобразования (градуировочная характеристика) – это зависимость между входной и выходной величинами. Выражается в виде графиков, формул и таблиц.

Функция преобразования бывает:

· линейная;

· нелинейная.

Под влиянием различных внешних факторов градуировочная характеристика может изменяться, при этом возникают аддитивные и мультипликативные погрешности.

Аддитивные – это погрешность 0, т.е это погрешность, которая остается постоянной на всем диапазоне измерения.


Мультипликативная - это погрешность крутизны характеристики, т.е погрешность, которая изменяется с увеличением диапазона измерения.



2. Вариация – это разность между двумя показаниями измерительного прибора, соответствующими данной точки диапазона измерений при двух направлениях медленных изменений измеряемой величины. Возникает вследствие трения в опорах и люфтах.

0 10 20 30 40 50 60 70

3. Класс точности – это обобщенная характеристика средств измерения, определяемая пределами, допускаемых основные и дополнительные погрешности, также другими свойствами средств измерения. Придел допускаемой погрешности средств измерения может устанавливаться в виде относительных, абсолютных или приведенной погрешности, в зависимости от характера ее измерения на всем диапазоне измерения.

Если средства измерения имеют аддитивную погрешность или она настолько велика, что мультипликативной можно принибречь, то в этом случае класс точности выражается через предел допустимой абсолютной погрешности.

Δ = + х; Δ = ± (а + вх);

В этом случае класс точности обозначается римскими цифрами или латинскими буквами. Однако указания только абсолютной погрешности позволяет сравнить между собой поточности средства измерения с разным диапазоном измерения, поэтому широкое распространение получило выражение класса точности через предел допускаемой приведенной погрешности.

= + Р; (1)

Шкалы бывают: равномерные и неравномерные.

Если шкала равномерная, то расчет ведется по формуле (1) в единицах измерения и класс точности записывается: 0,5…1,0.

Если шкала будет логарифмическая или гиперболическая, то расчет погрешности ведется в мм: .

Для средства измерения с преобладающей мультипликативной погрешностью, класс точности удобно выражать через придел допускаемой относительной погрешности, т.к. она остается постоянной на всем диапазоне измерения.

= + q;


Пример: …

Для средств измерения, в которых присутствуют как аддитивная, так и мультипликативная погрешности, класс точности выражается через придел допустимой относительной погрешности.

;

где Х – измеряемое значение в данной точке;

Хк – конечное значение шкалы;

С/d = 0,01/0,03;

С – определяется при max значениях приборов, С = + δ;

d - придел допускаемой абсолютной погрешности при 0 показании прибора выраженный в % от верхнего придела измерения,

d = + · 100%;

;

где - суммарная погрешность;

Основная погрешность;

Сумма дополнительных погрешностей;

i – влияющий фактор.

4. Чувствительность средств измерения – это изменение сигнала на выходе к вызвавшему его изменению входной величины:

;

5. Порог чувствительности - это входное воздействие вызывающее min ощутимое изменение выходной величины (измеряется в единицах входной величины).

6. Динамических характеристики средств измерения – это зависимость, определяющая изменения выходной величины как реакцию на известное изменение входной величины (выражается в виде графиков и формул).

Х вх Х вых

Средства измерений.

2. Измерительные преобразователи.

3. Измерительные приборы.

4. Измерительные системы.

5. Вспомогательные средства измерения.

1. Меры – это средства измерения, имеющие нормированные метрологические характеристики, воспроизводящие одну или несколько единиц измерения физической величины.

Меры бывают:

· однозначные (батарейка, конденсаты, гиря);

· многозначные (линейка, набор гирь, конденсатор переменной емкости).

2. Измерительные преобразователи (датчик) – это средство измерения, имеющие нормированные метрологические характеристики, предназначенные для преобразования одной физической величины в другую или в сигнал измерительной информации удобной для хранения, воспроизведения, передачи на расстояние, дальнейших преобразований, но не удобной для непосредственного восприятия наблюдателя.

К причинам возникновения аддитивных погрешностей СИ можно отнести:

Наличие неэлектрических влияющих факторов со стороны окружающей среды, действующих на элементы СИ, в том числе, влажности, давления воздуха, вибраций основания, на котором установлено СИ;

Наличие внешних электрических шумов и наводок;

Наличие внутренних тепловых (равновесных) и неравновесных шумов в проводящих элементах СИ;

Наличие контактной разности потенциалов и термоэлектрического тока;

Наличие сухого трения в подвижных элементах приборов;

Конструкция СИ;

Плохое заземление.

Внешние и внутренние электрические шумы и наводки, а также методы их подавления будут рассмотрены в дальнейшем. Сейчас остальные причины аддитивной погрешности СИ в виде примеров.


Конец работы -

Эта тема принадлежит разделу:

Классификация физических величин

Кафедра информационно измерительной техники и технологий.. и з джилавдари..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Размер физических величин. “Истинное значение” физических величин
В настоящее время в метрологии используются следующие понятия для характеристики размера (количественной характеристики) физической величины: - истинное значение; - действительное

Основной постулат и аксиома теории измерений
Как и любая другая наука, теория измерений должна строиться на основе постулатов или аксиом. Основным постулатом в теории измерений будем считать следующий постулат: измеряемая физическ

Теоретические модели материальных объектов, явлений и процессов
Реальные объекты и явления материального мира чрезвычайно сложны. Человеческое сознание не в состоянии охватить все свойства этих объектов и связи между ними, поэтому в процессе описания и изучения

Физические модели
Физика как наука о природе, изучающая простейшие, и вместе с тем, наиболее общие свойства материального мира, также базируется на теоретических моделях. Эти модели характеризуются определёнными пон

Математические модели
Построенные выше физические модели необходимо описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны

Погрешности теоретических моделей
Проблема достоверности наших представлений об окружающем мире, т.е. проблема соответствия модели объекта и реального объекта, является ключевой проблемой в теории познания. В настоящее время общепр

Измерение как физический процесс
Измерение любой физической величины – это эксперимент, который включает в себя

Методы измерений как методы сравнения с мерой
Это еще одна возможная классификация методов измерений – одна из самых важных, поскольку, по существу, процесс измерения, в конечном счете, сводится к сравнению измеряемой физической величины с мер

Метод прямого преобразования
В этом ме

Метод следящего уравновешивания
Отличительной о

Мостовой метод
Этот метод широко используется для измерения пассивных физических величин (объектов параметрического вида: сопротивление, индуктивность, ёмкость и т.д.), а также в системах регулирования. В этом ме

Разностный метод
Данный метод позволяет уменьшить сигнал на входе измерительного прибора и, тем самым, увеличить их точность за счет уменьшения мультипликативной погрешности. Это – один из наиболее точных методов.

Нулевые методы
Разностный метод называется нулевыми или компенсационным, в случае полной компенсации, т.е. если разность Δх=х-хоп=0. Достоинством нулевых методов являет

Метод развёртывающей компенсации
Основной недостаток метода следящего уравновешивания состоит в том, что при больших значениях величины сис

Измерительные преобразования физических величин
Измерительное преобразование – однозначное преобразование одной физической величины в другую физическую величину или сигнал, функционально с ней связанные, удобные для обработки, хранения и дальней

Статические характеристики и статические погрешности СИ
Основная статическая характеристика СИ – функция преобразования. Функция преобразования – функциональная з

Характеристики воздействия (влияния) окружающей среды и объектов на СИ
Воздействие (влияние) окружающей среды и объектов на СИ приводит и к дополнительным инструментальным (аддитивным, и к мультипликативным) погрешностям этого СИ. Обычно речь идет об отклонении значен

Полосы и интервалы неопределённости чувствительности СИ
Неопределенность чувствительности СИ это – неопределенность статической функции преобразования, обусловленная ее нестабильностью и проявляющая себя в виде случайных аддитивной и мультипликативной с

СИ с мультипликативной погрешностью
Эта погрешность связана со случайными изменениями наклона функции преобразования. В этом случае сигнал на выходе СИ имеет вид:

СИ с аддитивной и мультипликативной погрешностями
В этом случае выходной сигнал имеет вид: . Пусть, как и выше, относительная мультипликативная погрешность

Измерение больших величин
Что такое большие и малые измеряемые величины? Рассмотрим этот вопрос на примере измерения электрического сопротивления с помощью моста постоянного тока.

Формулы статических погрешностей средств измерений
Рассмотрим погрешность, определяемую формулой (13) предыдущего раздела: . (1) Эту формулу называю

Полный и рабочий диапазоны средств измерений
Полный диапазон СИ определяется интервалом измерения x, в котором относительная погрешность прибора

Динамические погрешности средств измерений
Все выше сказанное про погрешности СИ относилось к статическим погрешностям. Динамические погрешности СИ возникают при измерении величин, изменяющихся во времени. Различают два вида динамических по

Динамическая погрешность интегрирующего звена
Специфическим случаем динамической погрешности первого рода является погрешность усреднения, свойственная цифровым частотомерам, интегрирующим цифровым вольтметрам и другим приборам, дающим результ

Влияние сухого трения на подвижные элементы СИ
Пусть элемент представляет собой массу m, на которую действует упругая сила, сила трения, а также внешняя сила F. Тело движется с постоянной скоростью, сначала вправо, затем – влево.

Конструкция СИ
Ввиду большого разнообразия существующих конструкций СИ, рассмотрим данную причину аддитивной погрешности на простом примере – проволочного реостата.

Контактная разность потенциалов
В 1797г. Вольт установил, что если привести в электрический контакт металлы в следующей последовательности: Al, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd, то каждый предыдущий металл приобретё

Термоэлектрический ток
Если взять два металла 1 и 2 и привести их в контакт, а концы нагреть так, что Т1 не равна Т2 , то возникает ток, называемый термоэлектрическим током:

Помехи, возникающие из-за плохого заземления
Если объект измерения и измерительный преобразователь заземлены в различных точках (например, при использовании двух различных силовых розеток), то заземленные концы объединяются между собой по зем

Старение и нестабильность параметров СИ
“Старение ” элементов прибора сводиться к изменению их химических свойств и структуры, которые обусловлены химическими реакциями, протекающими под действием окружающей среды, наличием электрическог

Геометрическая нелинейность
Пример 1. Зависимость периода колебаний математического маятника от амплитуды колебаний по формуле

Физическая нелинейность
Пример 1. Прибор для измерения малых перемещений (дилатометр). Здесь перемещение одной пластины конденсатора относительно другой можно измерять, измеряя емкость конденсато

Токи утечки
Вследстви

Меры активной и пассивной защиты
Пассивная защита увеличивает сопротивление изоляции и включает: - создание пыленепроницаемой оболочки; - уменьшение влажности (обработка водоотталкивающим средств

Физика случайных процессов, определяющих минимальную погрешность измерений
Методические и инструментальные погрешности измерений, рассмотренные выше, могли быть любой величины. В последующих разделах будут рассмотрены факторы, определяющие минимально достижимую погрешност

Возможности органов зрения человека
Развитие техники измерений позволяет так построить процесс измерения и создать такие измерительные установки, что они все меньше ограничены возможностями человеческих органов чувств. Сегодня мы оче

Естественные пределы измерений
При измерении макроскопических величин максимальная точность ограничена статистическими флуктуациями возле среднего значения. Если эти флуктуации нельзя уменьшить при фиксированных внешних условиях

Соотношения неопределенности Гейзенберга
Существование принципа неопределенности обусловлено корпускулярно-волновой природой (дуализмом) материального мира, в котором состояние микросистем описывается волновой функцией, квадрат модуля кот

Естественная спектральная ширина линий излучения
Если применить соотношение неопределенностей между энергией и временем к спонтанному распаду в системах, находящихся в квазистационарных состояниях, т.е. в состояниях, которые существуют конечное в

Абсолютная граница точности измерения интенсивности и фазы электромагнитных сигналов
Применим соотношение к монохроматическим электромагнитным волнам. Для полного описания волны нужно измерит

Фотонный шум когерентного излучения
Дискретная природа электромагнитного излучения в виде фотонов приводит к флуктуациям потока фотонов. Рассмотрим идеальный детектор с квантовым выходом h=1 (например, фотоячейку, с катода которой ка

Эквивалентная шумовая температура излучения
Для описания шумов вводят так называемую эквивалентную шумовую температуру ТR излучения. При этой температуре мощность теплового шума в проводнике равна мощности квантового (фотон

Электрические помехи, флуктуации и шумы
Рассмотрим теперь электрические флуктуации, которые являются следствием дискретной природы электричества и хаотичности движения или случайности появления элементарных носителей электричества – элек

Дробовой шум
В электронной лампе акты вылета электронов с катода или попадания их на анод образуют последовательность независимых событий, происходящих в случайные моменты времени. Поэтому ток I(t

Шум генерации - рекомбинации
В почти беспримесном полупроводнике электроны и дырки появляются и исчезают случайным образом под влиянием процессов генерации и рекомбинации следующего вида: свободный электрон +

F-шум и его универсальность
Шум 1/f проявляет себя на низких частотах (как правило, ниже 10 кГц) в виде шума избыточного по сравнению с дробовым и с возрастающей по мере снижения частоты интенсивностью. Было обнаружено

Импульсный шум
Импульсный шум проявляет себя в p – n структурах и в неметаллических резисторах. Если этот шум усилить и подать на громкоговоритель, то звук будет похож на шум лопающихся при поджаривании ку

Математическая модель флуктуаций
Любые макроскопические системы, даже находящиеся в состояния равновесия, не являются каким-то “застывшим” образованием. Напротив, это состояние динамического равновесия. В них всегда происходят сло

Простейшая физическая модель равновесных флуктуаций
Всякую физическую систему всегда можно рассматривать как часть некой, пусть даже очень большой, замкнутой системы. Именно замкнутая система обладает одним замечательным свойством. Известно, что, вс

Основная формула расчета дисперсии флуктуации
Флуктуации – результат совместного действия огромного числа частиц образующих макросистему. В этом случае, в соответствии с предельной теоремой теории вероятностей, вероятность обнаружить значение

Влияние флуктуаций на порог чувствительности приборов
Флуктуации играют важную роль в действии современных высокочувствительных приборов – весов, гальванометров, микровольтметров и т. п. Чувствительность этих приборов столь высока, что они позволяют р

Скорость свободного тела
Будем рассматривать свободное твердое массой m как подсистему, находящуюся в тепловом контакте с окружающей средой, которую в таком случае называют тепловым резервуаром или термостатом. Окру

Колебания математического маятника
Найдем теперь средний угол случайных отклонений свободно висящего математического маятника. Работа, необхо

Повороты упруго подвешенного зеркальца
Одним из простейших и наиболее чувствительных приборов является легкое зеркальце, подвешенное на тонкой, о

Смещения пружинных весов
Совершенно аналогичные результаты могут быть получены для пружинных весов. Тепловое движение моле

Тепловые флуктуации в электрическом колебательном контуре
Вследствие хаотического (теплового) движения электронов в цепи контура в нем будут возникать флуктуации то

Корреляционная функция и спектральная плотность мощности шума
Корреляционная функция является детерминированной характеристикой случайного процесса (шума), которая связывает значение случайной величины (сигнала) x(t1) в данный

Флуктуационно-диссипационная теорема
Теория равновесных флуктуаций, представленная выше, нашла свое завершение в виде флуктуационно-диссипационной теоремы (ФДТ), сформулированной в 1951-1952 гг. Физическое содержание

Если диссипация энергии в системе отсутствует, в ней не может быть равновесия
Следовательно, статистическое равновесие предполагает наличие диссипации. Например, маятник, выведенный толчком из положения равновесия, может вернуться в исходное неподвижное состояние только при

Формулы Найквиста
Электроны, находясь в проводящей среде, испытывают со стороны этой среды беспорядочные толчки, как и броун

Спектральная плотность флуктуации напряжения и тока в колебательном контуре
Представим, что колебательный контур представляет систему, на входе которой действует источник шума (генер

Эквивалентная температура нетепловых шумов
В большинстве случаев пороговая чувствительность приборов и установок ограничивается не тепловым, а каким-либо другим источником шума (электронными шумами, механическими вибрациями). Например, при

Внешние электромагнитные шумы и помехи и методы их уменьшения
Существуют два основных способа уменьшения шумовых наводок: экранирование и заземление. Так как экранирование, как правило, сопровождается заземлением, они тесно связаны между собой. Так, например,

Особенности проводящего экрана без тока
Рассмотрим возможность экранирования проводника, помещенного в проводящий экран, от внешнего магнитного поля.

Особенности проводящего экрана с током
Определим величину магнитной связи между экраном в виде проводящей трубки и помещенным в нее проводником.

Магнитная связь между экрана с током и заключенным в него проводником
Вычислим напряжение, наводимое на центральный проводник вследствие прохождения по экрану тока Iэ и наличия индуктивной связи между экраном и проводником. Это напряжение будем рассматр

Использование проводящего экрана с током в качестве сигнального проводника
Лучший способ защиты сигнальной цепи от магнитных полей – уменьшение площади его контура. Площадь, представляющая интерес в этом плане, – это общая площадь, охваченная током, проходящим в сигнально

Защита пространства от излучения проводника с током
Чтобы предотвратить излучение во внешнее пространство, источник помех можно заключить в экран. Теоретически, как было показано выше, если сделать ток экрана равным по величине и направленным навстр

Анализ различных схем защиты сигнальной цепи путем экранирования
Было проведено сравнение экранирующих свойств в отношении магнитного поля для различных схем включения каб

Сравнение коаксиального кабеля и экранированной витой пары
Экранированная витая пара очень полезна на частотах до 100 кГц и в некоторых случаях до 10 МГц. На частотах выше 1 МГц потери в экранированной витой паре значительно возрастают.

Особенности экрана в виде оплетки
Большинство кабелей имеет экран в виде оплетки, а не сплошного проводника. Оплетка гибка, прочна на разрыв и допускает многократные перегибы. Однако оплетка перекрывает лишь 60 – 90% требуемой площ

Влияние неоднородности тока в экране
Проводимое выше рассмотрение магнитного экранирования основывалось на однородности распределения продольного тока в экране по его окружности. Сплошные экраны, например выполненные из алюминиевой фо

Избирательное экранирование
Примером устройства, где производится избирательное экранирование от электрического поля, а на магнитное поле не оказывается никакого воздействия, является антенна в виде экранированной петли. Така

Подавление шумов в сигнальной цепи методом ее симметрирования
Цель симметрирования состоит в том, чтобы сделать равными шумы, наводимые в обоих проводниках СИ. В этом с

Развязка по питанию
В большинстве электронных систем источник питания постоянного тока и система распределения питания являютс

Развязывающие фильтры
Для изоляции схемы от источника питания, исключения связи между схемами и отвода шумов источника питания от схемы можно использовать резистивно-емкостные и индуктивно-емкостные цепи развязки. Две т

Защита от излучения высокочастотных шумящих элементов и схем
Чтобы защититься от излучения «шумящих» высокочастотных схем, их помещают в металлические экраны. Чтобы эти экраны были эффективны, ко всем проводам, входящим в отсек или выходящим из него, следует

Шумы цифровых схем
Хотя все рассмотренные выше методы шумоподавления применимы как к аналоговым (линейным), так и к цифровым схемам, полезно посмотреть, как некоторые особенности цифровых схем влияют на их шумовые ха

Ближнее и дальнее электромагнитное поле
Характеристики электромагнитного поля определяются: - источником; - окружающей его средой; -

Эффективность экранирования
Ниже рассматривается эффективность экранирования тонких металлических листов в ближнем и дальнем полях. Эту эффективность определяют двумя способами. Один из этих способов базируется на соотношения

Полное характеристическое сопротивление и сопротивление экрана
Полное характеристическое сопротивление среды определяется следующим выражением: .(1). Для диэлектриков (s

Потери на поглощение
При прохождении электромагнитной волны в среде ее амплитуда уменьшается экспоненциально, как показано на рис.6. Это объясняется тем, что токи, индуцируемые в среде, вызывают омические потери и, сле

Потери на отражение
Потери на отражение на границе раздела двух сред связаны с различными значениями полных характеристических

Суммарные потери на поглощение и отражение для магнитного поля
Общие потери для магнитного поля получаются в соответствии с уравнением (3) как комбинация потерь на поглощение и на отражение. Если экран имеет значительную толщину (потери на поглощение >10дБ)

Влияние отверстий на эффективность экранирования
Предыдущие вычисления эффективности экранирования велись в предположении, что экран сплошной и не имеет стыков и отверстий. За исключением низкочастотных магнитных полей, очень легко получить эффек

Влияние щелей и отверстий
Величина утечки через разрывы в экране зависит главным образом от трех факторов: - максимального линейного размера (а не площади) отверстия; - волнового сопротивления; -

Использование волновода на частоте ниже частоты среза
Дополнительного ослабления поля можно достичь, если изменить форму отверстия так, чтобы получился волновод

Влияние круглых отверстий
Обычно для обеспечения вентиляции используется конфигурация, представленная на рис.14. Здесь показана част

Использование проводящих прокладок для уменьшения излучения в зазорах
Соединения, выполненные в виде непрерывного сварного или паяного шва, обеспечивают максимальное экранирование. Клепаные и винтовые соединения менее желательны. Если применяются винты, их следует ра

Шумовые характеристики контактов и их защита
В любом случае, когда контакты замыкают или размыкают цепь, в которой проходит ток, между ними может развиться пробой. Это возможно, когда контакты находятся в непосредственной близости друг к друг

Тлеющий разряд
Когда газ ионизируется под действием электрического поля между контактами, здесь может возникнуть самоподд

Дуговой разряд
Дуговой разряд может наблюдаться при напряжениях и расстояниях между контактами, намного меньших, чем те, которые требуются для тлеющего разряда. Он может возникать даже в вакууме, так как наличие

Сравнение цепей переменного и постоянного тока
Если мы хотим предохранить контакт от разрушения, то дугу, как только она возникнет, необходимо быстро прервать, чтобы свести к минимуму ущерб, наносимый ею контакту. Если разряд прервать недостато

Материал контактов
Ни один материал не может одинаково хорошо работать и при нулевых токах (обесточенная цепь), и при больших значениях тока. Палладий хорошо подходит для сильноточных цепей в условиях, вызывающих эро

Индуктивные нагрузки
Напряжение на индуктивности L определяется уравнением.Это выражение объясняет, почему при резком в

Принципы защиты контактов
На рис.7 в виде соотношений напряжение – расстояние представлены условия, необходимые для пробоя между контактами. Показана кривая напряжения, вызывающего возникновение тлеющего разряда, а также ми

Подавление переходных процессов при индуктивных нагрузках
Чтобы защитить контакты, переключающие индуктивные нагрузки и минимизировать излучаемые и наведенные помехи, необходимо параллельно индуктивности или (и) контактам включать цепи защиты. В не

Цепь с емкостью
На рис.16 показаны три вида цепей защиты, которые обычно ставятся на контакты, управляющие индуктивной наг

Цепь с емкостью и резистором
На рис.16,б показана схема, в которой недостатки схемы рис.16,а преодолены за счет ограничения разрядного тока конденсатора при замыкании контактов. Делается это путем включения после

Цепь с емкостью, резистором и диодом
На рис.16,в представлена более сложная схема защиты контактов, в которой преодолены недостатки схем на рис.16,а и б. Когда контакты разомкнуты, конденсатор С заряжен до

Защита контактов при резистивной нагрузке
В случае резистивных нагрузок и источников питания напряжением менее 300 В тлеющий разряд не возникает (и тем самым исключается из рассмотрения). Если напряжение питания превышает минимальное дугов

Рекомендации по выбору цепей защиты контактов
Для определения типа цепей защиты контактов при различных нагрузках можно воспользоваться следующими рекомендациями: 1. Для неиндуктивной нагрузки, потребляющей ток меньше дугового тока, з

Паспортные данные на контакты
Для контактов в паспорте обычно указываются максимально допустимые значения напряжения и тока при резистивной нагрузке. Когда контакты работают в режиме, предусмотренном паспортными данными, при за

Идеальный генератор тока и идеальный генератор напряжения
Рассмотрим простейшую электрическую цепь, содержащую источник э.д.с. Е, сопротивление нагрузки R

Согласование сопротивлений генераторных ИП
Есть два преобразователя: генераторный измерительный преобразователь ИП, который представлен своей ЭДС - Е(х), которая является функцией входной величины х, и СИ с входным сопр

Согласование сопротивлений параметрических преобразователей
Эквивалентная схема соединения параметрического ИП с последующим измерительным показана на рис. Здесь Е=const и принадлежит внешнему источнику питания (источнику возбуждения параметрического

Принципиальное различие информационных и энергетических цепей
При условии согласования преобразователей энергетический КПД генераторного преобразователя равен:

Использование согласующих трансформаторов
В случае

Метод отрицательной обратной связи
Рассмотрим измерительный преобразователь с мультипликативной погрешностью. Процесс преобразовани

Метод уменьшения ширины полосы пропускания
Данный метод является весьма эффективным для уменьшения влияния наводок и шумов, проникающих в измерительную цепь. Как было раньше показано, интегральной характеристикой шумов является их дисперсия

Эквивалентная полоса частот пропускания шумов
Существуют различные критерии оценки эквивалентной полосы пропускания Dfэкв шумов для элементов, характеристики которых зависят от частоты сигнала. В данном случае воспользуемся с

Метод усреднения (накопления) сигнала
Ширина полосы наблюдения сигнала (и, естественно, и шума) Df и время измерения T в самом общем виде связаны между собой соотношением неопределенности

Метод фильтрации сигнала и шума
Данный метод является простейшим средством сужения полосы пропускания. Будем различать следующие случаи: Частоты сигнала и шума не перекрываются (ωсигн≠ωшум

Проблемы создания оптимального фильтра
Проведение фильтрации сигнала вслепую связано с риском исказить форму сигнала. Поэтому желательно знать спектральную плотность сигнала S(w), чтобы использовать такой фильтр, параметры которо

Метод переноса спектра полезного сигнала
Рассмотрим этот метод на примере измерения светового потока нити накаливания электрической лампы (рис.) Если лампа подключена к источнику постоянного напряжения, она создает световой поток

Метод фазового детектирования
В этом методе периодический сигнал проходит через усилитель, знак коэффициента усиления которого изменяет

Метод синхронного детектирования
Функциональная блок-схема метода:

Погрешность интегрирования шумов с помощью RC - цепочки
При интегрировании (усреднении) сигналов х(t) обычно предполагают, что интегрирование является идеальным. Однако во многих случаях гораздо проще использовать не идеальный интегратор,

Метод модуляции коэффициента преобразования СИ
Функциональная блок-схема этого метода: Этот метод позволяет устранить аддитивную и мультипликат

Применение модуляции сигнала для увеличения его помехозащищенности
Чувствительность системы к помехам зависит не только от экранирования, заземления и т.п., но также и от используемой системы модуляции или кодирования сигнала. Таким системам модуляции, как амплиту

Метод дифференциального включения двух ИП
Он позволяет уменьшить погрешность нуля (аддитивную погрешность) и уменьшить мультипликативную погрешность, обусловленную нелинейностью функции преобразования. Предположим, что имеются два

Метод коррекции элементов СИ
метод коррекции рассмотрим на примерах. Пример 1.Пусть сопротивление резистора в измерительной цепи зависит от температуры t по закону r=r0

Методы уменьшения влияния окружающей среды и условий изменения
Пассивная защита от быстро изменяющихся влияющих величин путем: - фильтрации; - амортизации; - теплоизоляции и т.д. Активная защита от медленно изм

Организация измерений
Продуманная организация измерений, как определенная последовательность действий, позволяет обеспечить необходимую точность при минимальных затратах, т.е. сделать измерения оптимальными. Эту последо

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Зависимость погрешностей от значения измеряемой величины

В зависимости от вида функции преобразования прибора (преобразователя) его общая погрешность и ее составляющие различным образом зависят от значения измеряемой величины. Рассмотрим эти зависимости при разных функциях преобразования.

1. Зависимость Д(X ) и у(X ) при линейной функции Y = SX (Аддитивная и мультипликативная погрешности. Порог чувствительности)

Как уже отмечалось, функция преобразования вида присуща большинству измерительных приборов. При этом результирующая погрешность на выходе прибора (в единицах выходной величины) может возникать:

– во-первых, за счет аддитивного наложения на входную измеряемую величину некоторой малой неконтролируемой величины (например, шумы или наводки);

– во-вторых, из-за наличия аналогичной величины на выходе прибора -- например, в случае дискретного характера (квантования) выходного сигнала (входной сигнал обычно имеет неправильный (аналоговый) характер);

– в третьих, за счет малых неконтролируемых изменений (нестабильности) чувствительности

Причем, . С учетом этих факторов значение на выходе, очевидно, будет отличаться от теоретического значения на величину:

(В (1) слагаемым, имеющим более высокий порядок малости, пренебрегли). Из (1) следует, что результат измерения величины может быть представлен в виде

Здесь -- абсолютная погрешность измерения, выраженная, как и полагается, в единицах, и состоящая из двух слагаемых: первое из них называется аддитивной погрешностью (от add - прибавлять) поскольку она, как видим, суммируется с и не зависит от него. Второе слагаемое называется мультипликативной погрешностью (от multiply - умножать), так как оно определяется умножением измеряемого значения на относительную погрешность чувствительности

Таким образом, в случае линейной функции преобразования абсолютная погрешность измерения

Размещено на http://www.allbest.ru/

в общем случае состоит из суммы аддитивной и мультипликативной погрешностей. Первая из них не зависит от измеряемой величины, а вторая -- пропорциональна ей (рис 1а). При этом важно отметить, что так ведут себя в зависимости от абсолютные (размерные) значения этих погрешностей.

Поскольку с увеличением возрастает общая погрешность, может показаться, что с ростом измеряемой величины точность измерения будет уменьшаться. Однако, согласно (4) относительная погрешность, характеризующая, как известно, точность измерения, равна

Из следует два важных вывода. Во-первых, при представлении погрешности в относительном (безразмерном) виде, ее мультипликативная составляющая становится равной погрешности чувствительности, которая не зависит от значения измеряемой величины, а аддитивная составляющая оказывается обратно пропорциональной (рис. 1б).

Во-вторых, при линейной функции преобразования точность измерения повышается с увеличением измеряемой величины. Отсюда практическая рекомендация: при линейной функции преобразования в целях повышения точности измерения следует выбирать диапазон измерений так, чтобы предполагаемое значение измеряемой величины находилось как можно ближе к верхнему приделу шкалы прибора. Из (4), (5) и рис. 1 видно, что при больших значениях измеряемой возрастает вклад мультипликативной составляющей в общую погрешность, и, наоборот, при малых основную часть погрешности составляет аддитивная погрешность.

На практике погрешности измерения конкретным прибором обычно бывают заданы лишь в виде некоторых допустимых (предельных) значений или со знаком. Например, в техническом описании серийно выпускаемого цифрового частотомера (с линейной функцией преобразования) может быть указано, что основная погрешность измерения частоты не превышает значения, которое может быть задано либо в абсолютных значениях:

где первое слагаемое -- аддитивная, а вторая -- мультипликативная погрешность, либо в относительных значениях:

где вначале указана погрешность чувствительности (мультипликативная), а за ней относительная аддитивная составляющая. Разумеется, в конечном экземпляре такого частотомера или при конкретном измерении погрешность может быть меньше указанного предела.

Размещено на http://www.allbest.ru/

С учетом такой неопределенности задания погрешности выходную величину следует считать связанной с входной величиной соотношением, где увеличивается с ростом из-за мультипликативной составляющей. При этом вместо номинальной зависимости в виде прямой линии получается расширяющаяся полоса шириной (рис. 2), характеризующая зону неопределенности измерений, т. е. неопределенности наших знаний о действительном значении.

Поскольку минимальная ширина этой полосы равна, ясно, что значение измеряемой величины прибор не сможет достоверно отличить от нуля. Таким образом, минимально различимым значением, на которое достоверно реагирует прибор, является. Это значение, определяемое аддитивной погрешностью, называется порог чувствительности данного прибора.

2. Зависимость погрешности от измеряемой величины при нелинейной функции преобразования вида Y = a / (b + X )

Нетрудно выяснить, что преобразование такого вида выполняется в простейшем омметре со стрелочным указателем -- микроамперметром (рис 3а). Измеряемой величиной является, а выходной -- ток:

Размещено на http://www.allbest.ru/

Из видно, что, во-первых, шкала такого прибора нелинейна, т. е. неравномерна. Во-вторых, входная и выходная величины находятся в обратной зависимости -- большему значению соответствует меньший ток (рис 3б). Начало шкалы прибора, соответствующее должно соответствовать максимальному току указателя, а конец шкалы при должен соответствовать нулю тока. Обычно перед измерением проверяют правильность градуировки шкалы: при разомкнутом входе () убеждаются, что стрелка находится на крайнем левом делении, а при короткозамкнутом входе (и) -- на крайнем правом. При необходимости последнее условие выполняют изменяя.

Считая, что погрешность измерения определяется погрешностью измерения тока, продифференцируем по:

Знак минус в (10) отражает обратную зависимость и. Но поскольку погрешность обычно указывается с двойным знаком, этот минус в дальнейшем не будем учитывать.

Выразим относительную погрешность измерения:

Из (11) видно, что при стремящемся к 0 и к. Это значит, что есть, при котором будет минимальна. Известно, что для нахождения координат минимума зависимости необходимо приравнять нулю производную по:

Откуда следует, что при (рис 3в). Подставив это значение в (11), найдем

где есть приведенная погрешность микроамперметра, характеризующая его класс точности.

Сам по себе стрелочный указатель имеет линейную функцию преобразования (-- угол отклонения стрелки) и, следовательно, равномерную шкалу по току. Отсюда следует, что если, а значит минимальна и, то стрелка будет находиться посредине шкалы (рис 3б). погрешность подчиненность нелинейный квантовый

Итак, во-первых, при рассмотренном виде нелинейного преобразования минимум относительной погрешности находится в середине шкалы. Значит надо соответствующим образом выбирать диапазон шкалы. Во-вторых, из (12) следует, что этот минимум в 4 раза больше приведенной (минимальной) погрешности указателя (см (12)).

Погрешность квантования

Измерительные приборы с дискретной (квантованной) формой выходной величины, к которым относятся цифровые приборы, имеют ступенчато-линейную функцию преобразования. Размер ступени определяется шагом квантования выходной величины. При этом разным значениям непрерывной измеряемой величины соответствуют дискретные значения выходной величины. При этом показания прибора тоже будут дискретны с шагом квантования, где -- чувствительность линейной функции, которая имела бы место при. Отклонение ступенчатой функции преобразования от линейной приводит к появлению погрешности квантования, зависимость которой от измеряемой величины имеет пилообразный вид (рис 5а, б, в).

Из рис. 4 видно, что существует три разновидности квантования выходной величины:

Размещено на http://www.allbest.ru/

В первом случае значение, соответствующее зависимости заменяется дискретным значением, равным ближайшему уровню квантования. Несовпадение и будет определять погрешность квантования. Из рис. 5а видно, что значения погрешности квантования лежат в пределе от до. При этом все значения равновероятны и математическое ожидание такой погрешности равно 0. Из этого следует, что в этом случае погрешность квантования есть чисто случайная погрешность с равномерным распределением.

Во втором случае непрерывные значения заменяются на, соответствующие нижнему ближайшему уровню. Из рис. 5б видно, что погрешность квантования в этом случае лежит в пределе от до 0 и ее математическое ожидание равно. Видим, что в отличие от первого случая при данном способе квантования систематическая составляющая погрешности не равна нулю, а случайная, равномерно распределенная составляющая лежит в прежнем пределе.

В третьем случае отожествляется -- ближайшим верхним уровнем. Из рис. 5в видно, что погрешность квантования находится в интервале, ее систематическая составляющая равна, а случайная составляющая такая же, как и в двух предыдущих случаях.

Размещено на Allbest.ru

...

Подобные документы

    Расчёт относительной погрешности сопротивления резисторов. Оценка математического ожидания относительной погрешности сопротивлений резисторов, дисперсии относительных погрешностей сопротивлений резисторов, отклонения измеренного значения величины.

    контрольная работа , добавлен 29.04.2009

    Расчет суммарной инерционной погрешности гирокомпасов. Оценка влияния погрешностей на точность судовождения. Анализ применения магнитного компаса, лага, эхолота в реальных условиях плавания. Рассмотрение возможной величины поперечного смещения судна.

    курсовая работа , добавлен 23.01.2016

    Определение величины интенсивности отказов изделия. График вероятности безотказной работы. Расчет комплекса одиночного ЗИП. Расчет погрешности: схема функционального узла; параметры элементов. Расчет среднего значения производственной погрешности.

    контрольная работа , добавлен 29.11.2010

    Принципиальная схема и параметры составных элементов устройства для контроля отклонения от номинального значения неэлектрической величины. Выбор измерительного преобразователя: принцип действия, характеристика, конструктивное исполнение и применение.

    курсовая работа , добавлен 12.05.2012

    Обзор методов измерения физической величины и их сравнительный анализ. Принцип действия фотоэлектрических преобразователей. Избыточный коэффициент усиления. Источники погрешностей от приемников излучения. Погрешности от нестабильности условий измерений.

    курсовая работа , добавлен 06.12.2014

    Исследование влияния на ошибки квантования, спектры квантованного сигнала и ошибки выбора величины динамического диапазона. Исследование влияния соотношения частоты сигнала и частоты дискретизации АЦП. Режим усечения и округления результатов квантования.

    лабораторная работа , добавлен 17.10.2011

    Характеристика преобразователей частоты вращения: оптический, центробежный, индукционный и электрические тахометры постоянного тока. Датчики с переменным магнитным сопротивлением. Расчет функции преобразования, тепловых расширений и погрешностей.

    курсовая работа , добавлен 22.04.2009

    Разработка импульсно-цифрового преобразователя с частотно-импульсным законом. Расчет и построение графиков зависимостей погрешности дискретизации, погрешности отбрасывания и методической погрешности преобразований от параметра (fи) входного сигнала.

    курсовая работа , добавлен 08.12.2011

    Изучение передаточной функции линейной части нелинейной системы и расчет критерия устойчивости Гольдфарба. Определение периода квантования по теореме Котельникова. Исследование передаточных функций импульсной системы в разомкнутом и замкнутом состоянии.

    курсовая работа , добавлен 16.07.2011

    Средства электрических измерений: меры, преобразователи, комплексные установки. Классификация измерительных устройств. Методы и погрешности измерений. Определение цены деления и предельного значения модуля основной и дополнительной погрешности вольтметра.

Погрешность средства измерений - разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Погрешность меры - разность между номинальным значением меры и действительным значением воспроизводимой ею величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением, которое воспроизводится образцовым средством измерений или мерой. Для самой меры показанием является ее номинальное значение.

На рисунке 3.1 показана классификация погрешностей средств измерений, в которой они условно разбиты на пять групп в зависимости от природы их происхождения.

Рисунок 3.1 - Классификация погрешностей средств измерений

Систематическая погрешность средства измерений - составляющая погрешности измерения, которая при повторении равноточных измерений остаётся постоянной или закономерно изменяется. Эту погрешность можно исключить или вносить соответствующие поправки.

Систематическая погрешность конкретного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность. Причины возникновения систематических погрешностей и их классификация будут рассмотрены отдельно.

Случайная погрешность средства измерений (случайная погрешность) - составляющая погрешности измерения, которая изменяется случайным образом. случайная погрешность может быть обнаружена при повторных измерениях одной и той же величины, когда получаются неодинаковые результаты. Её нельзя исключить, но их влияние на результата измерения может быть теоретически учтено методами теории вероятности и математической статистики.

Промах - погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Иногда вместо термина «промах» применяют термин грубая погрешность измерений.

Промахи связаны с резким нарушением условий испытаний при отдельном наблюдении: толчки, неисправности измерительной аппаратуры, неправильные действия наблюдателя. Результаты измерений, содержащие промахи, должны быть отброшены как недостоверные.

Основная погрешность средства измерений (основная погрешность) - погрешность средства измерений, применяемого в нормальных условиях.

Дополнительная погрешность средства измерений (дополнительная погрешность) - составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.


Статическая погрешность средства измерений (статическая погрешность) - погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность средства измерений (динамическая погрешность) - погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины.

Абсолютная погрешность средства измерений (абсолютная погрешность) - погрешность средства измерений, выраженная в единицах измеряемой физической величины

D = х изм - х д, (3.1)

где х изм - измеренное значение, х д - действительное значение измеряемой величины.

Абсолютное значение погрешности - значение погрешности без учета ее знака (модуль погрешности). Необходимо различать термины абсолютная погрешность и абсолютное значение погрешности.

Относительная погрешность средства измерений (относительная погрешность) - погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины

. (3.2*)

Приведенная погрешность средства измерения (приведенная погрешность) - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, по-

стоянному во всем диапазоне измерений или в части диапазона

, (3.3)

где - нормирующее значение.Часто за нормирующее значение принимают верхний предел измерений.

Аддитивная погрешность (по лат. - получаемая путем сложения ) - погрешность, не зависящая от измеряемой величины. По закономерности проявления аддитивные погрешности могут быть случайными или систематическими.

Случайная аддитивная погрешность, например, вызываемая трением в опорах измерительного механизма, контактными сопротивлениями, дрейфом нуля и др., при изменении измеряемой величины принимать произвольное, но не зависящее от измеряемой величины значения. Её предельные значения образуют на характеристике полосу постоянной величины (рисунок 3.2,а). Точно такая же картина будет, если погрешность представляется как приведенная, поскольку знаменатель в выражении (3.3) не изменяется на протяжении всей шкалы независимо от значения измеряемой величины.

Примером систематической аддитивной погрешности является смещение нуля характеристики аналогового средства измерения (рисунок 3.2,б).

1 - фактическая характеристика, смещенная влево на длину О-О ¢ ; 2 - номинальная характеристика прибора; D с - значение систематической погрешности;

D 0 пр - предельное значение случайной погрешности

Рисунок 3.2 - Смещение характеристик аналогового измерительного прибора под влиянием аддитивных систематической (а) и случайной (б) погрешностей

Мультипликативная погрешность (по лат. - получаемая путем умножения ) - погрешность, величина которой изменяется прямо пропорционально измеряемой величине.

Пример - Источники мультипликативной погрешности - действие влияющих величин на параметры элементов и узлов СИ, например, изменение собственного сопротивления амперметра и встроенного в него шунта при изменении температуры окружающей среды.

В этом случае результат измерения определяется по формуле:

Поскольку при изменении температуры окружающей среды сопротивления и изменяются неодинаково, т.к. сделаны из разных материалов, погрешность измерения будет изменяться пропорционально соотношению этих сопротивлений.

Погрешность нелинейности имеет нелинейную зависимость от измеряемой величины. Чаще всего возникает как систематическая погрешность, связанная с линеаризацией номинальной статической характеристики.

Вариация имеет нелинейную зависимость от измеряемой величины, появляется вследствие гистерезисных явлений, вариации, проявляющейся при подходе к измеряемой точке со стороны меньших и больших значений; проявляется как систематическая погрешность (рисунок 3.3).

Рисунок 3.3 - Графическое представление вариации

Учёт всех нормируемых метрологических характеристик средств измерений является сложной и трудоёмкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности.

Класс точности средств измерений (класс точности) - обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая нормируемыми метрологическими характеристиками.

Класс точности дает возможность судить о том, в каких пределах находится погрешность средства измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важно при выборе средств измерений в зависимости от заданной точности измерений. Класс точности средств измерений конкретного типа устанавливают в стандартах технических требований (условий) или в других нормативных документах.

Нормируемые метрологические характеристики типа средства измерений (нормируемые метрологические характеристики) - совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений

Требования к нормируемым метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.

Например, для электроизмерительных приборов нормируют:

Пределы допускаемых погрешностей и соответствующие рабочие области влияющих величин;

Пределы допускаемых дополнительных погрешностей и соответствующие рабочие области влияющих величин;

Пределы допускаемой вариации показаний;

Невозвращение указателей к нулевой отметке.

Предел допускаемой погрешности средства измерений (предел допускаемой погрешности, предел погрешности) - наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.

При превышении установленного предела погрешности средство измерений признается негодным для применения (в данном классе точности).

Обычно устанавливают пределы допускаемой погрешности, то есть границы зоны, за которую не должна выходить погрешность.

Пример - Для 100-миллиметровой концевой меры длины 1-го класса точности пределы допускаемой погрешности ±50 мкм.

Пределы допускаемой абсолютной основной погрешности устанавливают по формуле

где и - положительные числа, не зависящие от .

Пределы допускаемой приведенной погрешности

где - положительное число, выбираемое из ряда

(1; 1,5; 2,0; 2,5; 4,0; 5,0; 6,0), при . (3.6)

Пределы допускаемой относительной основной погрешности определяют из уравнения

если установлено по формуле (3.4).

Если же D определено по формуле (3.4 *), т.е. имеется мультипликативная составляющая погрешности, пределы допускаемой относительной основной погрешности определяют по формуле

, (3.8)

где - больший по модулю из пределов измерений; . Значения чисел и должны быть округлены до чисел из ряда (3.6).

Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Классы точности присваиваются средствам измерений с учётом результатов государственных приёмочных испытаний.

Общие положения о делении средств измерений на классы точности и способы нормирования метрологических характеристик регламентированы ГОСТ 8.401—80. Однако этот стандарт не устанавливает классы точности средств измерения, для которых предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также если необходимо учитывать динамические характеристики.

Если класс точности прибора установлен по пределу допускаемой относительной основной погрешности, т.е по значению погрешности чувствительности [см. формулу (3.7)] и форма полосы погрешности принята чисто мультипликативной, обозначаемое на шкале значение класса точности обводится кружком.

Пример - обозначает, что = 1,5 %.

Если же полоса погрешности принята аддитивной и прибор нормируется по пределу допускаемой приведенной основной погрешности [см. формулу (3.5)], т.е. по значению погрешности нуля (таких приборов большинство), то класс точности указывается на шкале без каких-либо подчеркиваний.

Пример - 1,5 обозначает, что = 1,5 %.

Если шкала прибора неравномерная (например, у омметров), предел допускаемой основной приведенной погрешности выражается формулой (3.5), а нормирующее значение принято равным длине шкалы или ее части, класс точности обозначается на шкале одним числом, помещенным между двумя линиями, расположенными под углом.

Пример - обозначает, что = 0,5 %.

Если средство измерений обладает как аддитивной, так и мультипликативной полосой погрешности, а пределы допускаемой относительной погрешности в процентах устанавливаются формулой (3.8), классы точности обозначают числами с и d (в процентах), разделяя их косой чертой.

Пример - Если установлено, что для средства измерения , где с = 0,02; d = 0,01, то обозначение в документации будет «класс точности 0,02/0,01», а на приборе 0,02/0,01.

Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей по формуле (3.4), классы точности обозначают прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения.

Для всех рассмотренных случаев вместе с условным обозначением класса точности на шкале, щитке или корпусе средств измерений наносится номер стандарта или технических условий, устанавливающих технические требования на эти средства измерений. Таким образом, обозначение класса точности средства измерений дает достаточно полную информацию для вычисления приближенной оценки погрешностей результатов измерений.

Примеры обозначения классов точности на шкалах приборов приведены на рисунке 3.4.

а - вольтметр класса точности 0,5 с равномерной шкалой;

б - амперметр класса точности 1,5 с равномерной шкалой; в - амперметр класса точности 0,02/0,01 с равномерной шкалой; г - мегаомметр класса точности 2,5 с неравномерной шкалой.

Рисунок 3.4 - Лицевые панели приборов

1. Погрешность средств измерения и результатов измерения

Погрешности средств измерений - отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения - отклонение результата измерения от действительного (истинного) значения измеряемой величины, определяемая по формуле - погрешность измерения.

2. Инструментальные и методические погрешности

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.
Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

3. Статическая и динамическая погрешности

Статическая погрешность измерений - погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.

Динамическая погрешность измерений - погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

4. Систематическая и случайная погрешности

Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

5. Погрешности адекватности и градуировки

Погрешность градуировки средства измерений - погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.
Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

6. Абсолютная, относительная и приведенная погрешности

Абсолютная погрешность - алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой - ∆. На рисунке 1 ниже, ∆X и ∆Y - абсолютные погрешности.

Рис.2. Абсолютная погрешость

 

Возможно, будет полезно почитать: